Generating Virtual Patients by Multivariate and Discrete Re-Sampling Techniques
نویسندگان
چکیده
منابع مشابه
Outlier overcoming using re-sampling techniques
Machine learning has extensively and successfully used statistical resampling techniques for generation of classifier and predictor ensembles. It has been frequently shown that combining so called unstable predictors has a stabilizing effect on and improves the performance of the prediction system generated in this way. In this paper we use the re-sampling techniques in the context of Principal...
متن کاملContext and Feature Sensitive Re-sampling from Discrete Surface Measurements
This paper concerns context and feature-sensitive re-sampling of workspace surfaces represented by 3D point clouds. We interpret a point cloud as the outcome of repetitive and non-uniform sampling of the surfaces in the workspace. The nature of this sampling may not be ideal for all applications, representations and downstream processing. For example it might be preferable to have a high point ...
متن کاملGenerating the Reduced Set by Systematic Sampling
The computational difficulties occurred when we use a conventional support vector machine with nonlinear kernels to deal with massive datasets. The reduced support vector machine (RSVM) replaces the fully dense square kernel matrix with a small rectangular kernel matrix which is used in the nonlinear SVM formulation to avoid the computational difficulties. In this paper, we propose a new algori...
متن کاملImproving re-sampling detection by adding noise
Current image re-sampling detectors can reliably detect re-sampling in JPEG images only up to a Quality Factor (QF) of 95 or higher. At lower QFs, periodic JPEG blocking artifacts interfere with periodic patterns of re-sampling. We add a controlled amount of noise to the image before the re-sampling detection step. Adding noise suppresses the JPEG artifacts while the periodic patterns due to re...
متن کاملParallel multivariate slice sampling
Slice sampling provides an easily implemented method for constructing a Markov chain Monte Carlo (MCMC) algorithm. However, slice sampling has two major drawbacks: (i) it requires repeated evaluation of likelihoods for each update, which can make it impractical when evaluations are expensive or as the number of evaluations grows (geometrically) with the dimension of the slice sampler, and (ii) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pharmaceutical Research
سال: 2015
ISSN: 0724-8741,1573-904X
DOI: 10.1007/s11095-015-1699-x